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Structure and Triboluminescence of 
Polymorphs of (Ph3P)2C 

Sir: 

Hexaphenylcarbodiphosphorane1 ((Ph3P)2C) has attracted 
recent interest because of its triboluminescent properties,23 

its structure-bonding relationships,45 and its organometallic 
chemistry.6 During our spectroscopic studies of its tribolum­
inescence (TL), we found that triboluminescent crystals lose 
their TL upon standing. Further investigation revealed that 
single crystals of the non-TL polymorph could be obtained 
from solution by slow crystallization. The crystal structure of 
the non-TL phase, its differences from the previously reported4 

phase, and its implication to the triboluminescence mechanism 
are reported here. 

Nontriboluminescent, moisture sensitive, yellow dia­
mond-shaped crystals of ~0.20 by 0.16 mm were cleaved from 
needles grown by slow cooling of a diglyme solution in an in­
sulated container. X-ray diffraction data collected at —160 0C 
under a stream of cold, dry nitrogen indicated the ortho-
rhombic space group P2] 2,2,; a = 11.184(4), b = 12.956(4), 
c = 19.410(5) A; K =2812.5 A3; Z = 4; ^11Ic1J= 1.267 g/cm3. 
Data were collected on a Syntex Pl automated diffractometer 
with monochromatic Mo Ka radiation up to a 20 maximum 
of 47°; 1776 reflections of I > 3cr were used in the solution and 
refinement of the structure {Rnm\ = 0.041). No correction for 
crystal absorption was made (n = 1.38 cm"1). In addition to 
the low temperature structure determination, diffraction data 
were collected at room temperature and refined to a final R 
factor of 0.059. Crystal decomposition was observed in this case 
with a decrease in standard reflection intensities of ~30%. 
However, the crystal and molecular structures were essentially 
the same as those observed at low temperature.7 

The previously reported phase of hexaphenylcarbodiphos­
phorane contains two different molecular forms in a monoclinic 
C2 unit cell (/3 = 95.1 °).4 Bond length and bond angle differ­
ences between the molecular structures of the nontribolumi­
nescent molecule reported here (crystal A, Figure 1) and the 
two molecules of the previous structure (BI and BII) are shown 
in Table I. Torsion angles, defined as C-P-P-C, range from 
25.0 to 27.5° in the nontriboluminescent structure compared 
with the previously reported4 range of 5.5 to 8.3°. 

Table I. Hexaphenylcarbodiphosphorane: Molecular Data 

P = C = P angle, 
molecule deg 

distance, A 
C=P P-P P-C(Ph) 

(Ph3P)2C(A)" 
(Ph3P)^C(A)* 
(Ph3P)2C(BI) 
(Ph3P)2C(BlI) 
(Ph3P)2CH + 

134.4 
131.7 (3) 
130.1 (6) 
143.8(6) 
128.2(3) 

1.610 2.968 
1.635(5) 2.984 
1.633(4) 2.961 
1.629(3) 3.097 
1.702(5) 3.063 

1.853 
1.831 
1.837 
1.832 
1.808 

" Room temperature. * Low temperature. 
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Figure 1. Molecular structure of the nontriboluminescent form of 
(Ph3P)2C. 

Systems containing adjacent double bonds on a central 
carbon (e.g., C = C = C , C = C = N , or N = C = N ) are ex­
pected to be linear by conventional bonding schemes. Studies 
on crystals of molecules containing these units have shown that 
the bond angle about the central carbon can deviate from lin­
earity by at most only 10° owing to lattice forces.8-" When 
a phosphorus atom is included in the chian, adjacent double 
bond angles as small as 130° have been observed.4 In salts of 
the isoelectronic (Ph3P)2N

+ cation, P-N-P bond angles range 
from 134.6 to 180° as the anion is changed. 12-18 Both linear 
and bent forms of this cation can exist in the same unit 
cell.19 

Microcrystals of triboluminescent hexaphenylcarbodi-
phosphorane obtained by more rapid cooling of a diglyme so­
lution in an insulated flask exhibit different spectroscopic 
properties from crystal A. The photoluminescence of micro-
crystals of B consists of a broad band centered at 530 nm, while 
that of crystal form A is centered at 575 nm. When the mi­
crocrystals of B are left standing for a long period of time at 
room temperature, the luminescence shifts to 575 nm with no 
chemical decomposition of the crystals and the tribolumines-
cence disappears as they convert slowly to crystal form A. In 
addition to the luminescence differences, Raman spectra of 
powdered samples of the triboluminescent phase include two 
peaks of roughly equal intensity at 661 and 652 cm-1, while 
the nontriboluminescent sample shows only one vibration at 
661 cm-1. These bands are tentatively assigned to the P-C-P 
symmetric stretches of the molecules with bond angles of 130 
and 144°, respectively, in the TL-active phase and the molecule 
with the 132° angle in the TL-inactive phase. 

The different molecular geometries and crystal structures 
of the TL-active and -inactive phases illustrate the sensitivity 
of the P-C-P bond angle to packing forces. The difference in 
the packing forces, calculated using the model of Williams,20 

is only on the order of 1 kcal/mol. More importantly, the 
polymorphs illustrate the sensitivity of TL to structure. The 
piezoelectric properties of the crystal are a significant differ­
ence between the two polymorphs and perhaps are pertinent 
to the TL mechanism.3 The TL-active phase belongs to a polar 
space group, while the TL-inactive phase is nonpolar and can 
exhibit piezoelectric charging only under torsion. 
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Monomeric Molybdenum(V) Oxo Complexes with 
Tetradentate Aminoethanethiols 

Sir: 

Much of the current understanding of molybdenum enzymes 
is based on electron spin resonance (ESR) investigations of 
Mo(V) signals arising during turnover of the enzymes,1 These 
studies strongly suggest one (or more) of the ligands of the 
Mo(V) binding site in xanthine oxidase, aldehyde oxidase, 
sulfite oxidase, and nitrate reductase is the sulfur of a cysteine 
side chain.1-3 As pointed out by Bray,2 there is, however, a lack 
of ESR data from well-characterized monomeric Mo(V) 
complexes which could be used, by comparison, to obtain 
structural information concerning the enzymatic Mo(V) 
centers. Moreover, there are no ESR data for complexes of 
known structures bonded to thiol ligands within a saturated 
framework.4 A number of solution ESR spectra of such com­
plexes have been reported, but these are generally for a small 
amount of monomer of unknown structure in equilibrium with 
an ESR inactive dimer.4-6 

We report the preparation, ESR, visible and IR spectra, and 
electrochemical parameters of two monomeric Mo(V) ovo 
complexes with tetradentate aminoethanethiols. These appear 
to be the first such Mo(V) complexes to be described and their 
properties are of considerable interest with respect to the 
possible structure of enzymatic Mo(V) centers (in addition to 
cysteine sulfur, an NH ligand has been proposed as a likely 
group present at the Mo binding site of xanthine oxi­
dase1 -2-4). 

The complexes have the formula MoOClL, where L = 
A',A"-dimethyl-A',A''-bis(2-mercaptoethyl)ethylenediamine 
(Li)7 and A',A'/-bis(2-methyl-2-mercaptopropyl)ethylenedi-
amine (L2).

8 The complexes were obtained by refluxing, under 
nitrogen, a dilute (0.010 M) equal molar mixture of the ligand 

0002-7863/78/1500-8002S01.00/0 © 1978 American Chemical Society 


